
Abstract. A minimal distortion localization procedure is
devised for de®ning subsystems in super-molecule cal-
culations on weakly bonded complexes. When a set of
orbitals for the isolated subsystem have been chosen, the
localized supersystem orbitals are obtained by minimiz-
ing the sum of the least-square deviations from the
isolated subsystem orbitals. Test calculations are pre-
sented for the beryllium complexes Be2; Be3 and Be4,
and the neon dimer.
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1 Introduction

There are two main classes of computational models
used in the study of intermolecular interactions: sym-
metry adapted perturbation theories (SAPT) and super-
molecule (SM) models. A recent review of the SAPT is
given by Jeziorski et al. [1]. The main virtue of the SAPT
models is the interpretative feature of the models. The
interaction energy can be analysed in terms of polariza-
tion, induction, exchange and correlation contribution.
The main weakness of this class of models is the lack of
computational feasibility, in particular when third and
higher-order terms are considered. The SM models, on
the other hand, are based on ordinary quantum
chemistry models such as many-body perturbation
theory and coupled-cluster models. The SM approach
can then pro®t from the computational e�ciency of
several highly optimized quantum chemistry codes.
However, the disadvantage of these models is also
well-known: the lack of interpretability of the interaction
energy or the intermolecular potential.

The extended geminal models [2, 3] and extended
group function models [4, 5] developed by Rùeggen and

coworkers are a non-conventional SM model which also
o�ers an interpretative scheme. The present state of a
research programme based on extended geminal models
is given in a recent article by Rùeggen and Wind [6].
Within this approach the intermolecular potential can be
expressed in terms of distortion energies, i.e. the increase
in subsystem energies owing to the presence of partner
subsystems, and electrostatic, induction and correlation
interaction terms for the distorted subsystems. The de®-
nition of subsystems is a key element for applying this
interpretative scheme. The de®nition is based on a local-
ization of the occupied supersystem orbitals. Currently, a
localization scheme based on minimizing the Coulomb
repulsion between the corresponding electron pairs is
being adopted. However, this localization procedure is
not entirely satisfactory. We would like to study changes
in orbital densities owing to the presence of the partner
subsystems. However, a localization principle based on
minimizing the Coulomb repulsion might occasionally
create drastic changes in the localized orbitals when there
is only an in®nitesimal change in the supersystem geom-
etry. For example, Ahmadi et al. [7] demonstrated this
e�ect in the complex Ar �Na�. In this case an umbrella-
like structure for the localized valence orbitals of argon is
inverted for a certain internuclear distance R between
R � 3:8 a.u. and R � 4:2 a.u. This drastic change of lo-
calized orbital structure cannot easily be attributed to the
partner subsystem. It is most likely an artefact resulting
from the adopted localization procedure.

In this work we shall introduce a minimal distortion
localization (MDL) procedure. The key element is to
force the supersystem orbitals to be as similar as possible
to the isolated subsystem orbitals. Hence, a change in
the orbitals can then be interpreted as a genuine physical
change, i.e. resulting from the partner subsystems.

2 The MDL procedure

The supersystem comprises a set of closed shell subsys-
tems. Usually, for any supersystem calculation we start
by considering the isolated subsystems. The geometry
of the subsystems is identical to the geometry of the
subsystem in the complex. As a result of a restricted
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Hartree-Fock (RHF) calculation we have a set of
occupied orbitals for the isolated subsystem A:

uA;sub
i ; i � 1; . . . ;NA

occ

n o
;

where N A
occ is the number of doubly occupied orbitals in

subsystem A. The form of the orbitals fuA;sub
i g is in a

sense arbitrary. The orbitals might be the canonical
orbitals, localized orbitals based on a conventional
localization procedure, or localized orbitals subjected
to some symmetry restriction. The doubly occupied
orbitals for the supersystem are denoted

usuper
i ; i � 1; . . . ;N super

occ

� 	
;

where

N super
occ �

X
A

NA
occ : �1�

A projection operator is associated with the orbital space
de®ned by the occupied supersystem orbitals:

P super
occ �

XN super
occ

i�1
jusuper

i ihusuper
i j : �2�

The best choice, in a least-square sense, of localized
supersystem orbitals having the smallest possible devia-
tion from the orbitals for the isolated subsystems is
simply given by

ûA;super
i � P super

occ uA;sub
i ; i � 1; . . . ;NA

occ ; �3�
and for all subsystems A. By assuming there is no linear
dependence in the set fûA;super

i g, the sets fûA;super
i g and

fusuper
i g de®ne within a constant identical RHF

functions. Since, the set fûA;super
i g usually consists of

non-orthogonal functions, the key problem is then to
orthonormalize the orbitals fûA;super

i g in such a way that
the deviation from fûA;super

i g is as small as possible. One
choice could be to determine the localized orbitals
fusuper;loc

i g such that the functional

L �
XN super
occ

i�1
hûi ÿ usuper;loc

i jûi ÿ usuper;loc
i i �4�

has a minimum. For notational reasons, in Eq. (4) we
have used

ûif g � ûA;super
i

n o
: �5�

This particular choice is, however, not entirely satisfac-
tory. Core and valence orbitals are given equal weights
in the functional L. It is physically more attractive to
have the smallest changes for the core orbitals and the
largest changes for the valence orbitals when we
compare them with the corresponding orbitals for the
isolated subsystems. Hence, we partition the orbitals
fûig in a set of subgroups:

Xl � ûl
i ; i � 1; . . . ;Nl

� 	
; l � 1; 2; . . . : �6�

The number of subgroups and the number of orbitals in
each group depend on the character of the complex. The
partition might be based on the shell structure of the
atoms comprising the supersystem. The ordering of the

subgroups is such that the orbital energies associated
with subgroup Xn, are lower than the orbital energies
associated with subgroup Xn�1. Two examples will
illustrate this type of partition. For Ar2 we partition
the orbitals in three subgroups: the 1s-orbitals, the
L-shell orbitals, and the valence orbitals. For the
complex ArNe we partition the orbitals in four sub-
groups: the 1s-orbital of argon, the 1s-orbital of neon,
the L-shell orbitals of argon, and the valence orbitals of
argon and neon.

The next steps in the MDL procedure are then as
follows:

1. Orthonormalization of the orbitals in subgroup X1.
2. If there is more than one orbital in X1, determine the

localized orbitals fu1;super;loc
i g by minimizing the

functional

L1 �
XN

i�1
hû1

i ÿ u1;super;loc
i jû1

i ÿ u1;super;loc
i i : �7�

3. For subgroups no. n�n > 1�, construct a set or
orbitals, ~Xn � f~un

i g, which are orthogonal to the
localized orbitals in the preceeding subgroups, i.e.

~un
i � ûn

i ÿ
Xnÿ1
p�1

XN

j�1
up;super;loc

i hup;super;loc
i jûn

i i ;

i � 1; . . . ;Nn :

�8�

4. Orthonormalize the orbitals in subgroup ~Xn.
5. If there is more than one orbital in subgroup ~Xn,

determine the localized orbitals by minimizing the
functional

Ln �
XN

i�1
ûn

i ÿ hun;super;loc
i jûn

i ÿ un;super;loc
i i : �9�

The MDL procedure then ensures that the innermost
orbitals have the smallest deviation from the corre-
sponding isolated subsystem orbitals.

The minimization of the functionals fLlg is per-
formed by a restricted second-order procedure [8]. LetL
denote these functionals:

L �
Xn

i�1
hûi ÿ usuper;loc

i jûi ÿ usuper;loc
i i : �10�

For simplicity we have deleted the sub/superscript l. The
orthonormal orbitals of ~X are denoted fvi; i �
1; . . . ;Ng. We then have

usuper;loc
i �

XN

k�1
vkUki; i � 1; . . . ;N : �11�

We further write

U
�
� expfT�g ; �12�

where T� is a real skew-symmetric matrix; i.e.

T�
� � ÿ T� : �13�

The variational parameters are the independent matrix
elements Tpq, where p > q. In the following we give the
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expressions for the gradient and the Hessian, which are
required in the second-order procedure.

The gradient:

gpq � oL
oTpq

� �
0

�
XN

i�1

(
ÿ 2 ûi

�����A ousuper;loc
i

oTpq

* +

� 2 usuper;loc
i

����� ousuper;loc
i

oTpq

* +)
0

� 2

�
ûpjvq


 �ÿ ûqjvp


 ��
: �14�

The Hessian:

Gpq;rs � oL
oTpqoTrs

� �
0

�
X

i

ÿ2 ûi

���� o2usuper;loc
i

oTpqoTrs

* +(

� 2 usuper;loc
i

���� o2usuper;loc
i

oTpqoTrs

* +

� 2
ousuper;loc

i

oTpq

���� ousuper;loc
i

oTrs

* +)
0

� ÿ ûsjvp


 �� ûpjvs


 �� 	
dqr ÿ ûrjvq


 �� ûqjvr


 �� 	
dsp

� ûrjvp


 �� ûpjvr


 �� 	
dqs

� ûsjvq


 �� ûqjvs


 �� 	
drp : �15�

3 Localization measures

To characterize the localization of the orbitals we use
two concepts: the charge centroid and the charge
ellipsoid. The charge centroids are a set of vectors
de®ned on the basis of the expression for the electronic
part of the electric dipole moment:

URHFj ÿ
X2N

i�1
riU

RHF

* +
� ÿ2

XN

K�1
uK jruK

 � � ÿ2XN

K�1
rK :

�16�
The vector rK is the average position, or charge centroid,
of the two electrons associated with the spatial orbital
uK . Following Robb et al. [9] and Csizmadia [10] we
de®ne a measure of the extension of the geminal one-
electron density by means of the second-order moments
of the position operator, using the charge centroid as a
local origin. The second-order moments (or variance
matrix) associated with the geminal KRHF

K are de®ned by
the relations

MK
rs � uK j�xr ÿ xK

r ��xs ÿ xK
s �juK
 �

; r; s 2 f1; 2; 3g ;
�17�

where xK
r is the rth component of the charge-centroid

vector rK de®ned in Eq. (14). Diagonalization of the

variance matrix yields the charge ellipsoid. The eigen-
values fa1; a2; a3g of the matrix �MK

rs� correspond to the
squares of the half-axes of the ellipsoid. The standard
deviations in three orthogonal directions are therefore
given by

Dli � a1=2i ; i 2 f1; 2; 3g : �18�
The quantities fDlig can then be used as a measure of
the extension of the geminal one-electron density.
Furthermore, we may also use the volume of the
ellipsoid as a single number of the extension of the
geminal one-electron density

V � 4

3
pDliDl2Dl3 : �19�

4 Test cases

In this section we shall apply the advocated MDL
procedure to small beryllium clusters and the neon
dimer. The beryllium clusters may be considered as
strongly bonded complexes, while the neon dimer is a
weakly bonded complex.

4.1 Be2; Be3 and Be4

The adopted basis set for the beryllium complex is an
uncontracted �20s; 6p; 4d; 2f � set of Gaussian type
functions (GTFs) contracted to �10s; 6p; 4d; 2f �. The
exponents of the uncontracted s-type functions com-
prise an even-tempered set [11]: gi � abi; i � 1; . . . ; 2s;
a � 0:01605838 and b � 2:20140406. The uncontracted
�20s� set is contracted to �10s� by keeping the 9 most
di�use functions uncontracted, and using the expansion
coe�cients of the atomic 1s-orbital as contraction
coe�cients. The polarization functions are uncontracted
and they are de®ned with spherical harmonics. The
exponents of the polarization functions are all drawn
from the set of exponents of the s-type functions;
i.e. they all have the form g0i � a0bi. For the p-; d- and
f -type functions we have respectively a0 equal to
0.0353510, 0.0778218 and 0.1713171.

In this work we use the Beebe-Linderberg two-elec-
tron integral approximation [12, 13] with an integral
threshold set equal to 10ÿ8 a.u.

For the isolated beryllium atom we use canonical
orbitals. The charge centroids then coincide with the
nuclear position. In Fig. 1 we display an intersection

Fig. 1. Intersection between the xy-plane and the charge ellipsoids of
the 1s- and 2s-orbitals of the beryllium atom. Charge centroids are
marked with a cross and nuclear position with a dot
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between the xy-plane and the charge ellipsoids of the 1s-
and 2s-orbitals. In this case of course, the ellipsoids are
spheres. The lengths of the half-axes of ellipsoids are
given in Table 1. The canonical 1s- and 2s-orbitals of the
isolated beryllium atom are the reference orbitals which
the MDL orbitals of the beryllium complexes should
resemble as closely as possible.

For beryllium complexes we consider the dimer, a
trimer with equilateral triangular structure, and a tet-
ramer with tetrahedral structure. All atomic distances
are equal to 4.32 a.u., which is close to a bulk value for a
h.c.p. structure [14]. When applying the MDL proce-
dure, for all three complexes we partition the orbitals in
two groups: the core orbitals and the valence orbitals.
The results of the localization procedure are displayed in
Table 1 and Figures 2±4. Pertaining to the results, we
would like to emphasize the following points. First, as
assured by the construction, the core orbitals are only
slightly distorted. For the dimer, the charge centroids of
the 1s-orbitals are shifted into the interatomic region.
For the trimer and tetramer, the charge centroids of the
core orbitals are shifted away from the interatomic re-
gion. The shifts increase with the number of atoms in the
complex. Second, the distorted 2s-orbitals are shifted
into the interatomic region. As for the core orbitals, the
shifts increase with the number of atoms in the complex.
The largest half-axis of the charge ellipsoid of a valence
orbital is directed towards the centre of the geometrical
structure of the complex. There is a large expansion of
the orbital density along this axis, and increasing with
the number of atoms in the complex. For the dimer the
valence ellipsoids are contracted along the axes orthog-
onal to the interatomic axis. For the trimer, a valence
ellipsoid has a small expansion along the second axis in
the symmetry plane and a small contraction along the
axis orthogonal to the symmetry plane. For the tetramer
there are small expansions along both of the two shortest
axes of a valence ellipsoid. We notice that the overlap
between the charge ellipsoids of di�erent valence orbitals
increases when the number of atoms in the complex

increases. A question that will be addressed in a forth-
coming work is to what extent it is possible to have
atom-like localization of the valence orbitals when the
cluster Ben approaches the bulk complex. The MDL
approach should be an appropriate tool for analysing
this problem.

Table 1. Distances between
charge centroids and the ap-
propriate nucleus, half-axes and
volumes of charge ellipsoids for
beryllium complexes. The
changes of the quantitites with
respect to the values for the
isolated atom, in parenthesesa

a Interatomic distances are
4.32 a.u.
b Equilateral triangular struc-
ture
c Tetrahedral structure

krK ÿ R1k Dl1 Dl2 Dl3 V
(a.u.) (a.u.) (a.u.) (a.u.) (a.u.)

Be
1s-orbital 0.0 0.278661 0.278661 0.278661 0.090639
2s-orbital 0.0 1.675895 1.675895 1.675895 19.716481

Be2
1s-orbital 0.000081 0.278718 0.278718 0.278726 0.090698

(0.000081) (0.000057) (0.000057) (0.000065) (0.000059)
2s-orbital 0.211872 1.613118 1.613118 2.133576 23.255685

(0.211872) ()0.062777) ()0.062777) (0.457681) 3.539204

Be b3
1s-orbital 0.000768 0.278711 0.278812 0.278856 0.090768

(0.000768) (0.000050) (0.000151) (0.000195) (0.000129)
2s-orbital 0.792387 1.547911 1.824458 2.320770 27.453675

(0.792387) ()0.127984) (0.148563) (0.644875) (7.737194)

Be c4
1s-orbital 0.000833 0.278808 0.278808 0.278948 0.090829

(0.000833) (0.000097) (0.000097) (0.000092) (0.000190)
2s-orbital 1.122522 1.751182 1.751182 2.362615 30.348997

(1.122522) (0.075287) (0.075287) (0.686720) 10.632516

Fig. 2. Intersection between the xy-plane and the charge ellipsoids of
the MDL orbitals of the beryllium dimer. The interatomic distance is
equal to 4.32 a.u. Charge centroids are marked with a cross and
nuclear positions with a dot

Fig. 3. Intersection between the xy-plane and the charge ellipsoids of
the MDL orbitals of the beryllium trimer. The interatomic distance is
equal to 4.32 a.u. Charge centroids are marked with a cross and
nuclear positions with a dot
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4.2 The neon dimer

The basis set for the neon dimer is an uncontracted
�12s; 7p; 3d; 2f ; 1g� set of GTFs contracted to �6s; 4p; 3d;
2f ; 1g�. The s- and p-type functions are given by van
Duijneveldt [15]. The �12s; 7p� set is contracted to �6s; 4p�
by using the expansion coe�cients of the atomic 1s- and
2p-orbitals as contraction coe�cients, and keeping the
®ve most di�use s-type functions and the three most
di�use p-type functions uncontracted. The polarization

functions are taken from the work of Dunning [16]. The
set �6s; 4p; 3d; 2f ; 1g� is augmented with two additional
sets of di�use functions de®ned as an even-tempered
extension of the subset in question. For the g-type
functions we use the same quotient as for the f -type
functions. Hence, the adopted basis set comprises a
contracted �8s; 6p; 5d; 4f ; 3g� set of GTFs.

The integral threshold used in the Cholesky
decomposition of the two-electron matrix is set equal
to 10ÿ8 a.u.

The interatomic distance is 5.84 a.u., which is close to
the assumed minimum of the interatomic potential [17].

The localized orbitals of the atomic neon are obtained
by keeping the 1s-orbital identical to the canonical 1s-
orbital and by performing a Boys localization [18] of the
valence orbitals. Then we obtain four equivalent orbitals
with a tetrahedral-like structure: i.e. the charge centroids
of the valence orbitals coincide with the corners of a tet-
rahedron. For each of the isolated neon atoms we locate
one valence charge centroid along the interatomic axis of
the dimer. Hence, three charge centroids are pointing
away from the neighbouring neon atom. Furthermore,
the charge centroids outside the interatomic region are
rotated to an eclipsed con®guration (see Fig. 5). The
MDL orbitals of the dimer should then resemble these
localized atomic orbitals as closely as possible.

The results of theMDLprocedure are given in Table 2.
We notice that the 1s-orbitals of the dimer are practically
non-distorted. As for the two valence orbitals oriented
along the interatomic axis, they are shifted slightly to-
wards the nucleus of the atom they are part of. There is
also a small contraction of all three axes of the charge
ellipsoid of these two orbitals. As for the three equivalent
orbitals of each atom, i.e. those pointing away from the
neighbouring atom, the changes are an order of magni-
tude smaller than for the orbitals located in the inter-
atomic region. We then expect that when we consider the
electron correlation contribution to the interatomic po-
tential for the neon dimer, the dominating contributions
can be associated with the two orbitals located in the
interatomic region. This is in fact the case. In another
paper in this issue [19], an energy decomposition analysis
of the interatomic potential demonstrates this feature.

Fig. 4. Intersection between the xy-plane (a symmetry plane of Be4)
and the charge ellipsoids of two MDL orbitals of the beryllium
tetramer. All interatomic distances are equal to 4.32 a.u. Charge
centroids are marked with a cross and nuclear positions with a dot

Fig. 5. Intersection between the xy-plane and the charge ellipsoids of
MDL orbitals of the neon dimer. Interatomic distance is equal to
5.84 a.u. Charge centroids are marked with a cross and nuclear
positions with a dot

Table 2. Distances between
charge centroids and the ap-
propriate nucleus, half-axes and
volumes of charge ellipsoids for
the neon atom and the neon
dimer. The changes of the
quantities with respect to the
values for the isolated atom, in
parentheses

krK ÿ R1k Dl1 Dl2 Dl3 V
(a.u.) (a.u.) (a.u.) (a.u.) (a.u.)

Ne
1s-orbital 0.0 0.105623 0.105623 0.105623 0.004936
Valence orbital 0.451605 0.514760 0.514760 0.655456 0.727514

Ne a2
1s-orbital 0.0 0.105623 0.105623 0.105623 0.004936

(0.0) (0.000000) (0.000000) (0.000000) (0.000000)
t1-orbital

b 0.451393 0.514622 0.514622 0.655255 0.726901
()0.000212) ()0.000138) ()0.000138) ()0.000201) ()0.000613)

t2-orbital
c 0.451623 0.514762 0.514762 0.655438 0.727502

(0.000018) (0.000002) (0.000002) ()0.000018) ()0.000012)

a Interatomic distance equal to 5.84 a.u.
bOrbital along interatomic axis, see Fig. 5
cOne of three equivalent orbitals, pointing away from neighbouring atom, see Fig. 5
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5 Concluding remarks

The MDL procedure solves the problem of de®ning
subsystems in supermolecule calculations of intermole-
cular interactions. As demonstrated in the test calcula-
tions, it also allows for a detailed analysis of the changes
of the orbital densities owing to complex formation. Even
if the procedure is devised for a study of weakly bonded
complexes, it might also be useful for a study of more
strongly bonded systems. In particular, the MDL proce-
dure is expected to be useful for a study of localization in
large complexes of beryllium and magnesium.
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